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Abstract

We characterize the symmetric measures which satisfy the one dimensional convex infimum
convolution inequality of Maurey. For these measures the tensorization argument yields the
two level Talagrand’s concentration inequalities for their products and convex sets in Rn.
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1 Introduction

In the past few decades a lot of attention has been devoted to study the concentration of measure
phenomenon, especially the concentration properties of product measures on the Euclidean space
Rn. Through this note by |x|p we denote the lp norm on Rn, namely |x|p = (

∑n
i=1 |xi|p)1/p,

and let us take Bn
p = {x ∈ Rn : |x|p ≤ 1}. We say that a Borel probability measure µ on

Rn satisfies concentration with a profile αµ(t) if for any set A ⊂ Rn with µ(A) ≥ 1/2 we have
µ(A + tBn

2 ) ≥ 1 − αµ(t), t ≥ 0, where Bn
2 is the Euclidean ball of radius 1, centred at the origin.

Equivalently, for any 1-Lipschitz function f on Rn we have µ({x : |f −Medµ f | > t}) ≤ αµ(t),
t > 0, where Medµ f is a median of f . Moreover, with a slight modification of αµ, the median can
be replaced with the mean, see [L, Proposition 1.8].

A usual way to reach concentration is via certain functional inequalities. For example, we
say that µ satisfies Poincaré inequality (sometimes also called the spectral gap inequality) with
constant C, if for any f : Rn → R which is, say, C1 smooth, we have

Varµ(f) ≤ C

∫
|∇f |2 dµ. (1)

We assume that C is the best possible constant. This inequality implies the exponential concen-
tration, namely, concentration with a profile αµ(t) = 2 exp(−t/2

√
C). It is well known that the

product exponential probability measure νn, i.e., measure with density 2−n exp(−|x|1), satisfies (1)
with the constant 4 (see Lemma 2.1 in [BL] for a one-line proof of the one dimensional case). From
this fact (case n = 1) one can deduce, using the transportation argument, that any one-dimensional
log-concave measure (i.e. the measure with the density of the form e−V , where V is convex) with
variance 1 satisfies the Poincaré inequality with a universal constant C. In fact, there is a so-called
Muckenhoupt condition, see [Mu], that fully characterizes measures satisfying the one dimensional
Poincaré inequality. Here we state the result due to L. Miclo, see [Mi]. Namely, let us assume, for
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simplicity, that our measure is symmetric. If the density of the absolutely continuous part of µ is
equal to p then the optimal constant in (1) satisfies

B ≤ C ≤ 4B, where B = sup
x>0

{
µ[x,∞)

∫ x

0

1

p(y)
dy

}
,

see [Mi]. In particular, the constant C is finite if B <∞. Suppose that µ1, . . . , µn satisfy Poincaré
inequality with constant C. Then the same can be said about the product measure µ = µ1⊗. . .⊗µn,
due to tensorization property of (1) (see Corollary 5.7 in [L]), which follows immediately from the
subadditivity of the variance. Thus, one can say that the Poincaré inequality is fully understood
in the case of product measures.

A much stronger functional inequality that gives concentration is the so-called log-Sobolev
inequality,

Entµ(f 2) ≤ 2C

∫
|∇f |2 dµ, (2)

where for a function g ≥ 0 we set

Entµ(g) =

∫
g ln g dµ−

(∫
g dµ

)
ln

(∫
g dµ

)
.

It implies the Gaussian concentration phenomenon, i.e., concentration with a profile αµ(t) =
exp(−t2/2C). As an example, the standard Gaussian measure γn, i.e., the measure with density
(2π)−n/2e−|x|

2
2/2, satisfies (2) with the constant 1 (see [G]). As in (1), the log-Sobolev inequality

possesses similar tensorization properties and there is a full description of measures µ satisfying (2)
on the real line, see [BG2]. In particular, the optimal constant C in (2) for symmetric µ satisfies

1

75
B′ ≤ C ≤ 936B′, where B′ = sup

x>0

{
µ[x,∞) ln

(
1

µ[x,∞)

)∫ x

0

1

p(y)
dy

}
.

These bounds were improved in [BR].
Another way to concentration leads through the so-called property (τ) (see [M] and [LW]). A

measure µ on Rn is said to satisfy property (τ) with a nonnegative cost function ϕ if the inequality(∫
ef�ϕ dµ

)(∫
e−f dµ

)
≤ 1 (3)

holds for every bounded measurable function f on Rn. Here (f�ϕ)(x) = infy{f(y) + ϕ(x − y)}
is the so-called infimum convolution. Property (τ) implies concentration, see Lemma 4 in [M].
Namely, for every measurable set A we have

µ ({x /∈ A+ {ϕ < t}}) ≤ µ(A)−1e−t.

The property (τ) for the standard Gaussian measure γn, with the quadratic cost function 1
4
|x|22,

can be proved by the use of the so-called Prekopa-Leidler inequality, see [M, Theorem 2]. Based on
this idea Bobkov and Ledoux proved a version of property (τ) for log-concave measures dµ = e−V dx
with V satisfying strong convexity condition λV (x) + (1 − λ)V (y) ≥ V (λx + (1 − λ)y) + c

2
(λ +

o(λ))‖x− y‖2, on arbitrary normed space (Rn, ‖ · ‖), see [BL2].
In the seminal paper [M] Maurey showed that the exponential measure ν1 satisfies the infimum

convolution inequality with the cost function ϕ(t) = min{ 1
36
t2, 2

9
(|t| − 2)}. As a consequence of
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tensorization (see Lemma 1 in [M]) we get that νn satisfies (3) with the cost function ϕ(x) =∑n
i=1 ϕ(xi). This leads to the so-called Talagrand’s two level concentration,

νn

(
A+ 6

√
tBn

2 + 9tBn
1

)
≥ 1− 1

νn(A)
e−t,

(see Corollary 1 in [M]). As we can see, this gives a stronger conclusion than the Poincaré inequality.
It is a well known fact that the property (τ) with a cost function which is quadratic around 0, say
ϕ(x) = C|x|2 for |x| ≤ 1, implies the Poincaré inequality with the constant 1/(4C), see Corollary
3 in [M]. We shall sketch the argument in Section 2. Moreover, Bobkov, Gentil and Ledoux
showed that the property (τ) with a cost function ϕ(x) = min{|x|/a, |x|2/a2}, where | · | is the
Euclidean norm on Rn, is equivalent to the Poincaré inequality for smooth f : Rn → R and
provided quantitative relation between a and the Poincaré constant, see [BGL].

Clearly, the property (τ) with a cost function ϕ implies the weak property (τ),
∫
ef�ϕ dµ ≤

e
∫
f dµ. Conversely, the latter implies property (τ) with ϕ̃(x) = 2ϕ(x/2). It turns out that the

weak property (τ) with a cost function ϕ is equivalent to the so-called transportation-entropy
inequality related to ϕ, namely, the inequality inf Eϕ(X − Y ) ≤

∫
ln(dν/dµ)dν valid for all ν,

where the infimum runs over all the random vectors (X, Y ) whose marginals X, Y have laws µ and
ν, respectively. For the proofs of these equivalences see [GL, Section 8.1]. Moreover, there is a
full characterization of one-dimensional measures satisfying the transport-entropy inequality (or,
equivalently, property (τ)) for a fixed convex cost function ϕ that is quadratic on some interval
[−h, h], h > 0, see [Go2].

The goal of this article is to investigate concentration properties of a wider class of measures,
i.e., measures that may not even satisfy the Poincaré inequality. For example, in the case of purely
atomic measures one can easily construct a non-constant function f with

∫
|∇f |2 dµ = 0. However,

one can still hope to get concentration if one restricts A to the class of convex sets. It turns out
that to reach exponential concentration for convex sets, it suffices to prove that the measure µ
satisfies the convex Poincaré inequality. Below we state the formal definition.

Definition 1. We say that a Borel probability measure µ on R satisfies the convex Poincaré
inequality with a constant Cp if for every convex function f : R→ R with f ′ bounded we have

Varµ(f) ≤ Cp

∫
R

(f ′)2 dµ. (4)

Here we adopt the standard convention that for a locally Lipschitz function f : R −→ R the
gradient f ′ is defined by

f ′(x) = lim sup
h→0

f(x+ h)− f(x)

h
. (5)

This definition applies in particular to convex f . If f is differentiable, (5) agrees with the usual
derivative.

We also need the following definition.

Definition 2. Let h > 0 and λ ∈ [0, 1). Let M(h, λ) be the class of symmetric measures on R,
satisfying the condition µ[x+ h,∞) ≤ λµ[x,∞) for x ≥ 0. Moreover, letM+(h, λ) be the class of
measures supported on R+, satisfying the same condition.

The inequality (4) has been investigated by Bobkov and Götze, see [BG, Theorem 4.2]. In
particular, the authors proved (4) in the class M(h, λ) with a constant Cp depending only on h
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and λ. This leads to the exponential concentration for 1-Lipschitz convex functions f (as well
as the exponential concentration for convex sets) via the standard Herbst argument (see, e.g.,
Theorem 3.3 in [L]), by deriving the bound on the Laplace transform of f .

It is worth mentioning that a much stronger condition µ[x + C/x,∞) ≤ λµ[x,∞), x ≥ m,
where m is a fixed positive number, has been considered. It implies log-Sobolev inequalities for
log-convex functions and the Gaussian concentration of measure for convex sets. We refer to the
nice study [A] for the details.

In [M] the author showed that every measure supported on a subset of R with diameter 1
satisfies the convex property (τ), i.e. the inequality (3) for convex functions f , with the cost
function 1

4
|x|2 (see Theorem 3 therein). The aim of this note is to extend this result. We introduce

the following definition.

Definition 3. Define

ϕ0(x) =

{
1
2
x2 |x| ≤ 1
|x| − 1

2
|x| > 1

.

We say that a Borel probability measure µ on R satisfies convex exponential property (τ) with
constant Cτ if for any convex function f : R→ R with inf f > −∞ we have(∫

ef�ϕ dµ

)(∫
e−f dµ

)
≤ 1 (6)

with ϕ(x) = ϕ0(x/Cτ ).

We are ready to state our main result.

Theorem 1. The following conditions are equivalent

(a) µ ∈M(h, λ),

(b) There exists Cp > 0 such that µ satisfies the convex Poincaré inequality with constant Cp,

(c) There exists Cτ > 0 such that µ satisfies the convex exponential property (τ) with constant
Cτ .

Moreover, (a) implies (c) with the constant Cτ = 17h/(1 − λ)2, (c) implies (b) with the constant
Cp = 1

2
C2
τ and (b) implies (a) with h =

√
8Cp and λ = 1/2.

This generalizes Maurey’s theorem due to the fact that any symmetric measure supported on the
interval [−1, 1] belongs to M(1, 0).

It is well known that the convex property (τ) tensorizes, namely, if µ1, . . . , µn have convex
property (τ) with cost functions ϕ1, . . . , ϕn then the product measure µ = µ1 ⊗ . . . ⊗ µn has
convex property (τ) with ϕ(x) =

∑n
i=1 ϕi(xi), see [M, Lemma 5]. Therefore Theorem 1 implies

the following Corollary.

Corollary 1. Let µ1, . . . , µn ∈M(h, λ) and let us take µ = µ1⊗ . . .⊗µn. Define the cost function
ϕ(x) =

∑n
i=1 ϕ0(xi/Cτ ), where Cτ = 17h/(1− λ)2. Then for any convex function we have(∫

ef�ϕ dµ

)(∫
e−f dµ

)
≤ 1. (7)
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As a consequence, one can deduce the two-level concentration for convex sets and convex functions
in Rn.

Corollary 2. Let µ1, . . . , µn ∈ M(h, λ). Let Cτ = 17h/(1 − λ)2. Take µ = µ1 ⊗ . . . ⊗ µn. Then
for any convex set A with µ(A) > 0 we have

µ
(
A+
√

2tCτB
n
2 + 2tCτB

n
1

)
≥ 1− e−t

µ(A)
.

Corollary 3. Let µ1, . . . , µn ∈ M(h, λ). Let Cτ = 17h/(1 − λ)2. Take µ = µ1 ⊗ . . . ⊗ µn. Then
for any convex function f : Rn → R with

|f(x)− f(y)|2 ≤ a|x− y|2, |f(x)− f(y)|1 ≤ b|x− y|1, x, y ∈ Rn,

we have

µ ({f > Medµ f + Cτ t}) ≤ 2 exp

(
−1

8
min

{
t

b
,
t2

a2

})
, t ≥ 0, (8)

and

µ ({f < Medµ f − Cτ t}) ≤ 2 exp

(
−1

8
min

{
t

b
,
t2

a2

})
, t ≥ 0. (9)

Let us mention that very recently Adamczak and Strzelecki established related results in the
context of modified log-Sobolev inequalities, see [AS]. For simplicity we state their result in the
case of symmetric measures. For λ ∈ [0, 1), β ∈ [0, 1] and h,m > 0 the authors defined the class of
measures Mβ

AS(h, λ,m) satisfying the condition µ([x + h/xβ,∞)) ≤ λµ([x,∞)) for x ≥ m. Note
that M0

AS(h, λ, 0) = M(h, λ). They proved that products µ = µ1 ⊗ . . . ⊗ µn of such measures
satisfy the inequality

Entµ(ef ) ≤ CAS

∫
ef
(
|∇f |2 ∨ |∇f |

β+1
β
β+1
β

)
dµ. (10)

for any smooth convex function f : R → R. As a consequence, for any convex set A in Rn with
µ(A) ≥ 1/2 we have

µ
(
A+ t

1
2Bn

2 + t
1

1+βCτB
n
1+β

)
≥ 1− e−C′ASt, t ≥ 0.

Here the constants CAS, C
′
AS depend only on the parameters β,m, h and λ. They also established

inequality similar to (8), namely for a convex function f with

|f(x)− f(y)|2 ≤ a|x− y|2, |f(x)− f(y)|1+β ≤ b|x− y|1+β, x, y ∈ Rn,

one gets

µ ({f > Medµ f + 2t}) ≤ 2 exp

(
− 3

16
min

{
t1+β

b1+βCβ
AS

,
t2

a2CAS

})
, t ≥ 0.

However, the authors were not able to get (9). In fact one can show that for β = 0 our Theorem
1 is stronger than (10). In particular, the inequality (10) is equivalent to∫

ef�ϕ dµ ≤ e
∫
f dµ,

see [AS], which easily follows from (7).
While writing this note, we were aware of a work in progress by Gozlan, Roberto, Samson, Shu

and Tetali (private communication), which shows an equivalence between the convex property (τ)
on the real line and certain mass transportation inequalities (see also [GRST]).

The rest of this article is organized as follows. In the next section we prove Theorem 1. In
Section 3 we deduce Corollaries 2 and 3.
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2 Proof of Theorem 1

We need the following lemma, which is essentially included in Theorem 4.2 of [BG]. For reader’s
convenience we provide a straightforward proof of this fact.

Lemma 1. Let µ ∈M+(h, λ) and let g : R→ [0,∞) be non-decreasing with g(0) = 0. Then∫
g2 dµ ≤

(
2

1− λ

)2 ∫
(g(x)− g(x− h))2 dµ(x).

Proof. We first prove that

λ

∫
g(x) dµ(x) ≥

∫
g(x− h) dµ(x)

for any non-decreasing g : R→ [0,∞) such that g(0) = 0. Both sides of this inequality are linear
in g. Therefore, it is enough to consider only functions of the form g(x) = 1[a,∞)(x) for a ≥ 0,
since g can be expressed as a mixture of these functions. For g(x) = 1[a,∞)(x) the above inequality
reduces to λµ[a,∞) ≥ µ[a+ h,∞), which is clearly true due to our assumption on µ.

The above is equivalent to

(1− λ)

∫
g(x) dµ(x) ≤

∫
(g(x)− g(x− h)) dµ(x). (11)

Now, let us use (11) with g2 instead of g. Then,∫
g2 dµ ≤ 1

1− λ

∫
(g(x)2 − g(x− h)2) dµ(x)

=
1

1− λ

∫
(g(x)− g(x− h))(g(x) + g(x− h)) dµ(x)

≤ 1

1− λ

(∫
(g(x)− g(x− h))2 dµ(x)

)1/2(∫
(g(x) + g(x− h))2 dµ(x)

)1/2

≤ 2

1− λ

(∫
(g(x)− g(x− h))2 dµ(x)

)1/2(∫
g(x)2 dµ(x)

)1/2

We arrive at (∫
g2 dµ

)1/2

≤ 2

1− λ

(∫
(g(x)− g(x− h))2 dµ(x)

)1/2

.

Our assertion follows.

In the rest of this note, we take f : R → R to be convex. Let x0 be a point where f attains
its minimal value. Note that this point may not be unique. However, one can check that what
follows does not depend on the choice of x0. Moreover, if f is increasing (decreasing) we adopt the
notation x0 = −∞ (x0 =∞). Let us define a discrete version of gradient of f ,

(Df)(x) =


f(x)− f(x− h) x > x0 + h
f(x)− f(x0) x ∈ [x0 − h, x0 + h]
f(x)− f(x+ h) x < x0 − h

.
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Lemma 2. Let f : R→ R be a convex function with f(0) = 0 and let µ ∈M(h, λ). Then∫ (
ef/2 − e−f/2

)2
dµ ≤ 8

(1− λ)2

∫
ef(x)((Df)(x))2 dµ(x).

Proof. Step 1. We first assume that f is non-negative and non-decreasing. It follows that f(x) = 0
for x ≤ 0. Correspondingly, the function g = ef/2 − e−f/2 is non-negative, non-decreasing and
g(0) = 0. Moreover, let µ+ be the normalized restriction of µ to R+. Note that µ+ ∈ M+(h, λ).
From Lemma 1 we get∫ (

ef/2 − e−f/2
)2

dµ =
1

2

∫
g2 dµ+ ≤ 2

(1− λ)2

∫
(g(x)− g(x− h))2 dµ+(x)

=
4

(1− λ)2

∫
(g(x)− g(x− h))2 dµ(x).

Observe that

g(x)− g(x− h) = e
f(x)
2 − e−

f(x)
2 − e

f(x−h)
2 + e−

f(x−h)
2

=
(
e
f(x)
2 − e

f(x−h)
2

)(
1 + e−

f(x)
2
− f(x−h)

2

)
≤ 2

(
e
f(x)
2 − e

f(x−h)
2

)
≤ e

f(x)
2 (f(x)− f(x− h)),

where the last inequality follows from the mean value theorem. We arrive at∫ (
ef/2 − e−f/2

)2
dµ ≤

(
2

1− λ

)2 ∫
ef(x)((Df)(x))2 dµ(x).

Step 2. Now let f be non-decreasing but not necessarily non-negative. From convexity of
f and the fact that f(0) = 0 we get |f(−x)| ≤ f(x) for x ≥ 0. This implies the inequality
|ef(−x) − e−f(−x)| ≤ |ef(x) − e−f(x)|, x ≥ 0. From the symmetry of µ one gets∫ (

ef/2 − e−f/2
)2

dµ ≤
∫ (

ef/2 − e−f/2
)2

dµ+.

Let f̃ = f1[0,∞). From Step 1 one gets∫ (
ef/2 − e−f/2

)2
dµ+ = 2

∫ (
ef̃/2 − e−f̃/2

)2
dµ

≤ 8

(1− λ)2

∫
ef̃(x)((Df̃)(x))2 dµ(x)

≤ 8

(1− λ)2

∫
ef(x)((Df)(x))2 dµ(x).

Step 3. The conclusion of Step 2 is also true in the case of non-increasing functions with
f(0) = 0. This is due to the invariance of our assertion under the symmetry x→ −x, which is an
easy consequence of the symmetry of µ and the fact that for F (x) = f(−x) we have (DF )(x) =
(Df)(−x).

Step 4. Let us now eliminate of the assumption of monotonicity of f . Suppose that f is not
monotone. Then f has a (not necessarily unique) minimum attained at some point x0 ∈ R. Due
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to the remark of Step 3 we can assume that x0 ≤ 0. Since f(0) = 0, we have f(x0) ≤ 0. Take
y0 = inf{y ∈ R : f(y) = 0}. Clearly y0 ≤ x0. We define

f1(x) =

{
f(x) x ≥ x0
f(x0) x < x0

, f2(x) =

{
0 x ≥ y0
f(x) x < y0

.

Note that f1 is non-decreasing and f2 is non-increasing. Moreover, f1(0) = f2(0) = 0. Therefore,
from the previous steps applied for f1 and f2 we get

(ef(x0)/2−e−f(x0)/2)2µ((−∞, x0])+

∫ +∞

x0

(
ef/2 − e−f/2

)2
dµ ≤ 8

(1− λ)2

∫ +∞

x0

ef(x)((Df)(x))2 dµ(x)

(12)
and ∫ y0

−∞

(
ef/2 − e−f/2

)2
dµ ≤ 8

(1− λ)2

∫ y0

−∞
ef(x)((Df)(x))2 dµ(x). (13)

Moreover, since |f(x)| ≤ |f(x0)| on [y0, x0], we have∫ x0

y0

(
ef/2 − e−f/2

)2
dµ ≤ (ef(x0)/2−e−f(x0)/2)2µ([y0, x0]) ≤ (ef(x0)/2−e−f(x0)/2)2µ((−∞, x0]). (14)

Combining (12), (13) and (14), we arrive at∫ (
ef/2 − e−f/2

)2
dµ ≤ 8

(1− λ)2

∫
ef(x)((Df)(x))2 dµ(x).

The following lemma provides an estimate on the infimum convolution.

Lemma 3. Let C1, h > 0. Define ϕ1(x) = 1
C1
ϕ0(x/h). Assume that a convex function f satisfies

|f ′| ≤ 1/(C1h). Then

(f�ϕ1)(x) ≤ f(x)− C1

2
|(Df)(x)|2.

Proof. Let us consider the case when x ≥ x0+h. We take θ ∈ [0, 1] and write y = θ(x−h)+(1−θ)x.
Note that x− y = hθ. By the convexity of f we have

(f�ϕ1)(x) ≤ f(y) + ϕ1(x− y) ≤ θf(x− h) + (1− θ)f(x) + ϕ1(hθ)

= θf(x− h) + (1− θ)f(x) +
1

2C1

θ2.

Let us now take θ = C1(f(x)− f(x− h)). Note that 0 ≤ f ′ ≤ 1/C1h yields θ ∈ [0, 1]. We get

(f�ϕ1)(x) ≤ f(x)− θ(f(x)− f(x− h)) +
1

2C1

θ2 = f(x)− C1

2
(f(x)− f(x− h))2.

The case x ≤ x0 − h follows by similar computation (one has to take y = θ(x+ h) + (1− θ)x).
Also, in the case x ∈ [x0 − h, x0 + h] it is enough to take y = θx0 + (1− θ)x and use the fact that
|x− y| = |θ(x− x0)| ≤ hθ.
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Proof of Theorem 1. We begin by showing that (a) implies (c). We do this in three steps.
Step 1. We first show that it is enough to consider only the case when f satisfies |f ′| ≤ 1/Cτ .

Let us show that (6) is actually satisfied for all convex f : R→ R bounded from below. To this end
let us fix f and consider g(x) = supy∈R{(f�ϕ)(y)− ϕ(x− y)}. Since g(x) = supy∈R infz∈R{f(z) +
ϕ(y − z)− ϕ(x− y)}, we get, by taking z = x, that g(x) ≤ f(x) for all x ∈ R. Moreover, since f
is bounded from below, it is easy to see that g is also bounded from below. Since f is convex, one
can check that the function f�ϕ is also convex (classical property of infimum convolution). Thus,
writing g(x) = supu∈R{(f�ϕ)(x−u)−ϕ(u)}, the function g turns out to be convex as a supremum
of convex functions. Finally, since x 7→ ϕ(x − y) is (1/Cτ )-Lipschitz for every y, the function g
is also (1/Cτ )-Lipschitz. We check that g�ϕ = f�ϕ. Indeed, the inequality g�ϕ ≤ f�ϕ follows
from g ≤ f . The other direction is obtained by writing that

(g�ϕ)(x) = inf
y∈R

sup
z∈R

inf
w∈R
{f(w) + ϕ(z − w)− ϕ(y − z) + ϕ(x− y)}

and by taking z = x. Using g�ϕ = f�ϕ, g ≤ f and the fact that g is (1/Cτ )-Lipschitz, we arrive
at (∫

ef�ϕ dµ

)(∫
e−f dµ

)
≤
(∫

eg�ϕ dµ

)(∫
e−g dµ

)
≤ 1.

Step 2. The inequality (6) stays invariant when we add a constant to the function f . Thus, we
may and will assume that f(0) = 0. Note that from the elementary inequality 4ab ≤ (a + b)2 we
have

4

(∫
ef�ϕ dµ

)(∫
e−f dµ

)
≤
(∫ (

ef�ϕ + e−f
)

dµ

)2

.

Thus, it is enough to show that ∫ (
ef�ϕ + e−f

)
dµ ≤ 2.

Step 3. Take C1 = 17/(1 − λ)2, Cτ = C1h and ϕ(x) = ϕ0(x/Cτ ). Assume that |f ′| ≤ 1/Cτ .
By the convexity of ϕ0 we get ϕ(x) ≤ 1

C1
ϕ0(x/h), since C1 > 1. Thus, by Lemma 3 we get

f�ϕ ≤ f(x) − 1
2
C1|(Df)(x)|2. By the mean value theorem |(Df)(x)|/h ≤ 1/Cτ . Therefore,

1
2
C1|(Df)(x)|2 ≤ 1

2
C1(

h
Cτ

)2 = 1/2C1. Let α(C1) = 2C1(1 − exp(− 1
2C1

)). The convexity of the
exponential function yields e−s ≤ 1− α(C1)s, s ∈ [0, 1/2C1]. Therefore,∫ (

ef�ϕ + e−f
)

dµ ≤
∫ (

ef(x)−
1
2
C1|(Df)(x)|2 + e−f(x)

)
dµ(x)

≤
∫ (

ef(x)
(

1− 1

2
C1α(C1)|(Df)(x)|2

)
+ e−f(x)

)
dµ(x).

Therefore, since ef + e−f − 2 = (ef/2 − e−f/2)2, we are to prove that∫ (
ef/2 − e−f/2

)2
dµ ≤ C1

2
α(C1)

∫
ef(x)|(Df)(x)|2 dµ(x).

From Lemma 2 this inequality is true whenever 1
2
C1α(C1) ≥ 8

(1−λ)2 . It suffices to observe that

1

2
C1α(C1) = C2

1

(
1− e−

1
2C1

)
≥ C2

1

(
1− 1

1 + 1
2C1

)
=

C1

2 + 1
C1

≥ C1

2 + 1
8

=
8

(1− λ)2
.
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We now sketch the proof of the fact that (c) implies (b). Due to the standard approximation
argument one can assume that f is a convex C2 smooth function with bounded first and second
derivative (note that in the definition of the convex Poincaré inequality we assumed that f ′ is
bounded). Consider the function fε = εf . The infimum of ψx(y) = ϕ(y) + εf(x− y) is attained at
the point y satisfying the equation ψ′x(y) = ϕ′(y)−εf ′(x−y) = 0. Note that ψ′x is strictly increasing
on the interval [−Cτ , Cτ ]. If ε is sufficiently small, it follows that the above equation has a unique
solution yx and that yx ∈ [−Cτ , Cτ ]. Thus, yx = C2

τ εf
′(x− yx). This implies yx = εC2

τ f
′(x) + o(ε).

We get

f�ϕ(x) = ϕ(yx) + εf(x− yx) =
1

2C2
τ

y2x + εf(x− εC2
τ f
′(x)) + o(ε2)

=
1

2
ε2C2

τ f
′(x)2 + εf(x)− ε2C2

τ f
′(x)2 + o(ε2)

= εf(x)− 1

2
ε2C2

τ f
′(x)2 + o(ε2).

Therefore, from the infimum convolution inequality we get(∫
eεf(x)−

1
2
ε2C2

τ f
′(x)2+o(ε2) dµ(x)

)(∫
e−εf dµ

)
≤ 1.

Testing (6) with f(x) = |x|/Cτ one gets that
∫
eϕ dµ <∞ and therefore

∫
e|x|/Cτ dµ <∞. Also,

there exists a constant c > 0 such that |f(x)| ≤ c(1 + |x|), x ∈ R. As a consequence, after some
additional technical steps, one can consider the Taylor expansion of the above quantities in ε = 0.
This gives(∫ (

1 + εf − 1

2
ε2C2

τ f
′2 +

1

2
ε2f 2 + o(ε2)

)
dµ

)(∫ (
1− εf +

1

2
ε2f 2 + o(ε2)

)
dµ

)
≤ 1.

Comparing the terms in front of ε2 leads to∫
f 2 dµ−

(∫
f dµ

)2

≤ 1

2
C2
τ

∫
f ′2 dµ.

This is exactly the Poincaré inequality with constant 1
2
C2
τ .

We show that (b) implies (a). Suppose that a symmetric Borel probability measure µ on
R satisfies the convex Poincaré inequality with a constant Cp. Consider the function fu(x) =
max{x− u, 0}, u ≥ 0. We have ∫

R
|f ′u(x)|2 dµ(x) = µ([u,∞)).

Since fu(y) = 0 for y ≤ 0 and µ((−∞, 0]) ≥ 1/2, one gets

Varµfu =
1

2

∫
R

∫
R

(fu(x)− fu(y))2 dµµ(x) dµµ(y) ≥ 1

2

∫
R

∫ 0

−∞
(fu(x)− fu(y))2 dµµ(x) dµµ(y)

≥ 1

4

∫
R

(fu(x))2 dµµ(x) ≥ 1

4

∫ ∞
u+
√

8Cp

(fu(x))2 dµµ(x) ≥ 2Cpµ
([
u+

√
8Cp,∞

))
.

These two observations, together with Poincaré inequality, yield that µ ∈M(
√

8Cp, 1/2).
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3 Concentration properties

We show that the convex property (τ) implies concentration for convex sets.

Proposition 1. Suppose that a Borel probability measure µ on Rn satisfies the convex property
(τ) with a non-negative cost function ϕ, restricted to the family of convex functions. Let Bϕ(t) =
{x ∈ Rn : ϕ(x) ≤ t}. Then for any convex set A we have

µ(A+Bϕ(t)) ≥ 1− e−t

µ(A)
.

The proof of this proposition is similar to the proof of Proposition 2.4 in [LW]. We recall the
argument.

Proof. Let f = 0 on A and f = ∞ outside of A. Note that f is convex (to avoid working with
functions having values +∞ one can consider a family of convex functions fn = n dist(A, x) and
take n→∞). Suppose that (f�ϕ)(x) ≤ t. Then there exists y ∈ Rn such that f(y)+ϕ(x−y) ≤ t.
Thus, y ∈ A and x − y ∈ Bϕ(t). Therefore x ∈ A + Bϕ(t). It follows that x /∈ A + Bϕ(t) implies
(f�ϕ)(x) > t. Applying the infimum convolution inequality we get

et(1− µ(A+Bϕ(t))) · µ(A) ≤
(∫

ef�ϕ dµ

)(∫
e−f dµ

)
≤ 1.

Our assertion follows.

We are ready to derive the two-level concentration for convex sets.

Proof of Corollary 2. The argument is similar to [M, Corollary 1]. Due to Corollary 1, µ =
µ1 ⊗ . . . ⊗ µn satisfies property (τ) with the cost function ϕ(x) =

∑n
i=1 ϕ0(xi/Cτ ). Suppose

that ϕ(x) ≤ t. Define y, z ∈ Rn in the following way. Take yi = xi if |xi| ≤ Cτ and yi = 0
otherwise. Take zi = xi if |xi| > Cτ and zi = 0 otherwise. Then x = y + z. Moreover,

n∑
i=1

ϕ(yi/Cτ ) +
n∑
i=1

ϕ(zi/Cτ ) =
n∑
i=1

ϕ(xi/Cτ ) ≤ t.

In particular |y|22 ≤ 2C2
τ t and t ≥

∑n
i=1 ϕ(zi/Cτ ) ≥ 1

2
|z|1/Cτ , since |zi| − 1

2
≥ 1

2
|zi| for |zi| ≥ 1.

This gives x ∈
√

2tCτB
n
2 + 2tCτB

n
1 . Our assertion follows from Proposition 1.

Finally, we prove concentration for convex Lipschitz functions.

Proof of Corollary 3. The proof of (8) is similar to the proof of Propositon 4.18 in [L]. Let us
define a convex set A = {f ≤ Medµ f} and observe that µ(A) ≥ 1/2. Moreover,

A+ Cτ (
√

2tBn
2 + 2tBn

1 ) ⊂ {f ≤ Medµ f + Cτ (a
√

2t+ 2bt)}.

Applying Corollary 2 we get

µ
({
f > Medµ f + Cτ (a

√
2t+ 2bt)

})
≤ 2e−t, t ≥ 0.

Take s = Cτ (a
√

2t+ 2bt) and r = s/Cτ . Suppose that r
b
≤ r2

a2
. Then

a
√

2t+ 2tb = r ≥ 1

2

√
a2r/b+

1

2
r = a

√
2
r

8b
+ 2b

r

4b
≥ a

√
2
r

8b
+ 2b

r

8b
.
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By the monotonicity of x 7→ a
√

2x + 2xb, x ≥ 0 it follows that 1
8

min{ r
b
, r

2

a2
} = r

8b
≤ t. Moreover,

if r
b
≥ r2

a2
, then

a
√

2t+ 2tb = r ≥ 1

2
r +

br2

2a2
= a

√
2
r2

8a2
+ 2b

r2

4a2
≥ a

√
2
r2

8a2
+ 2b

r2

8a2
.

Therefore, 1
8

min{ r
b
, r

2

a2
} = r2

8a2
≤ t. Thus,

µ ({f > Medµ f + rCτ}) ≤ 2e−t ≤ 2 exp

(
−1

8
min

{
r

b
,
r2

a2

})
, t ≥ 0.

For the proof of (9) we follow [T]. Define a convex set B = {f < Medµ f − Cτ (a
√

2t + 2bt)}
with t ≥ 0. It follows that

A+ Cτ (
√

2tBn
2 + 2tBn

1 ) ⊂ {f < Medµ f}

and thus Corollary 2 yields

1

2
≥ µ

(
A+ Cτ (

√
2tBn

2 + 2tBn
1 )
)
≥ 1− e−t

µ(B)
.

Therefore µ(B) ≤ 2e−t. To finish the proof we proceed as above.
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